Assessing coastline recession for adaptation planning: sea level rise versus storm erosion

Author:

Ranasinghe Roshanka,Callaghan David P.,Li Fan,Wainwright David J.,Duong Trang Minh

Abstract

AbstractThe Sixth Assessment report (AR6) of the Intergovernmental Panel on Climate Change (IPCC) states with high confidence that most sandy coasts around the world will experience an increase in coastal erosion over the twenty-first century. An increase in long term coastal erosion (coastline recession) along sandy coasts can translate into massive socio-economic impacts, unless appropriate adaptation measures are implemented in the next few decades. To adequately inform adaptation measures, it is necessary to have a good understanding of the relative importance of the physical processes driving coastline recession, as well as of linkages between consideration (or not) of certain processes and the level of risk tolerance; understandings that are hitherto lacking. Here, we apply the multi-scale Probabilistic Coastline Recession (PCR) model to two end-member sandy coastal types (swell dominated and storm dominated), to investigate where and when coastline recession projections are dominated by the differential contributions from Sea Level Rise (SLR) and storm erosion. Results show that SLR substantially increases the projected end-century recession at both types of coasts and that projected changes in the wave climate have only a marginal impact. An analysis of the Process Dominance Ratio (PDR), introduced here, shows that the dominance of storm erosion over SLR (and vice versa) on total recession by 2100 depends on both the type of the beach and the risk tolerance levels. For moderately risk-averse decisions (i.e. decisions accounting only for high exceedance probability recessions and hence do not account for very high amounts of potential recession—for example, the placement of temporary summer beach cabins), additional erosion due to SLR can be considered as the dominant driver of end-century recession at both types of beaches. However, for more risk-averse decisions that would typically account for higher potential recession (i.e. lower exceedance probability recessions), such as the placement of coastal infrastructure, multi-storey apartment buildings etc., storm erosion becomes the dominant process. The results of this study provide new insights on which physical processes need to be considered when and where in terms of numerical modelling efforts needed for supporting different management decisions, potentially enabling more streamlined and comprehensive assessments of the efficacy of coastal adaptation measures.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3