Author:
Ranasinghe Roshanka,Callaghan David P.,Li Fan,Wainwright David J.,Duong Trang Minh
Abstract
AbstractThe Sixth Assessment report (AR6) of the Intergovernmental Panel on Climate Change (IPCC) states with high confidence that most sandy coasts around the world will experience an increase in coastal erosion over the twenty-first century. An increase in long term coastal erosion (coastline recession) along sandy coasts can translate into massive socio-economic impacts, unless appropriate adaptation measures are implemented in the next few decades. To adequately inform adaptation measures, it is necessary to have a good understanding of the relative importance of the physical processes driving coastline recession, as well as of linkages between consideration (or not) of certain processes and the level of risk tolerance; understandings that are hitherto lacking. Here, we apply the multi-scale Probabilistic Coastline Recession (PCR) model to two end-member sandy coastal types (swell dominated and storm dominated), to investigate where and when coastline recession projections are dominated by the differential contributions from Sea Level Rise (SLR) and storm erosion. Results show that SLR substantially increases the projected end-century recession at both types of coasts and that projected changes in the wave climate have only a marginal impact. An analysis of the Process Dominance Ratio (PDR), introduced here, shows that the dominance of storm erosion over SLR (and vice versa) on total recession by 2100 depends on both the type of the beach and the risk tolerance levels. For moderately risk-averse decisions (i.e. decisions accounting only for high exceedance probability recessions and hence do not account for very high amounts of potential recession—for example, the placement of temporary summer beach cabins), additional erosion due to SLR can be considered as the dominant driver of end-century recession at both types of beaches. However, for more risk-averse decisions that would typically account for higher potential recession (i.e. lower exceedance probability recessions), such as the placement of coastal infrastructure, multi-storey apartment buildings etc., storm erosion becomes the dominant process. The results of this study provide new insights on which physical processes need to be considered when and where in terms of numerical modelling efforts needed for supporting different management decisions, potentially enabling more streamlined and comprehensive assessments of the efficacy of coastal adaptation measures.
Publisher
Springer Science and Business Media LLC
Reference39 articles.
1. McGranahan, G., Balk, D. & Anderson, B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 19, 17–37 (2007).
2. Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding—A global assessment. PLoS ONE 10, e0118571 (2015).
3. Ranasinghe, R. et al. Climate change information for regional impact and for risk assessment. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Masson-Delmotte, V. et al.) (Cambridge University Press, 2021).
4. Vousdoukas, M. I. et al. Sandy coastlines under threat of erosion. Nat. Clim. Change. 10, 260–263 (2020).
5. Hinkel, J. et al. A global analysis of erosion of sandy beaches and sea-level rise: An application of DIVA. Glob. Planet. Change 111, 150–158 (2013).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献