Author:
Neumann Łukasz,Nowak Robert,Stępień Jacek,Chmielewska Ewelina,Pankiewicz Patryk,Solan Radosław,Jahnz-Różyk Karina
Abstract
AbstractIn this work we present an automated approach to allergy recognition based on neural networks. Allergic reaction classification is an important task in modern medicine. Currently it is done by humans, which has obvious drawbacks, such as subjectivity in the process. We propose an automated method to classify prick allergic reactions using correlated visible-spectrum and thermal images of a patient’s forearm. We test our model on a real-life dataset of 100 patients (1584 separate allergen injections). Our solution yields good results—0.98 ROC AUC; 0.97 AP; 93.6% accuracy. Additionally, we present a method to segment separate allergen injection areas from the image of the patient’s forearm (multiple injections per forearm). The proposed approach can possibly reduce the time of an examination, while taking into consideration more information than possible by human staff.
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献