Chaotic synchronization of two optical cavity modes in optomechanical systems

Author:

Yang Nan,Miranowicz AdamORCID,Liu Yong-Chun,Xia KeyuORCID,Nori FrancoORCID

Abstract

Abstract The synchronization of the motion of microresonators has attracted considerable attention. In previous studies, the microresonators for synchronization were studied mostly in the linear regime. While the important problem of synchronizing nonlinear microresonators was rarely explored. Here we present theoretical methods to synchronize the motions of chaotic optical cavity modes in an optomechanical system, where one of the optical modes is strongly driven into chaotic motion and transfers chaos to other weakly driven optical modes via a common mechanical resonator. This mechanical mode works as a common force acting on each optical mode, which, thus, enables the synchronization of states. We find that complete synchronization can be achieved in two identical chaotic cavity modes. For two arbitrary nonidentical chaotic cavity modes, phase synchronization can also be achieved in the strong-coupling small-detuning regime.

Funder

United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office

MEXT | Japan Society for the Promotion of Science

MEXT | RIKEN

John Templeton Foundation

United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research

the National Key R&D Program of China

Japan Society for the Promotion of Science London

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3