Oxygen-Cluster-Modified Anatase with Graphene Leads to Efficient and Recyclable Photo-Catalytic Conversion of CO2 to CH4 Supported by the Positron Annihilation Study

Author:

Ahmed Gulzar,Raziq Fazal,Hanif Muddasir,Khan Javid,Munawar Khurram Shahzad,Wu Mingmei,Cao XingzhongORCID,Liu Zhongwu

Abstract

Abstract Anatase TiO2 hollow nanoboxes were synthesized and combined with the graphene oxide to get nanocomposite of TiO2/rGO (TG). Graphene oxide was used to modify the Oxygen-Clusters and bulk to surface defects. Anatase and TG composite were characterized with the positron annihilation, XPS, EPR, EIS and photocurrent response analysis. The relative affects of defects on the photocatalytic reduction (CO2 to CH4) were studied. The TG composites showed highest photo-catalytic activity after GO coupling (49 µmol g−1 h−1), 28.6 times higher photocurrent yields much higher quantum efficiency (3.17%@400 nm) when compared to the TiO2 nanoboxes. The mechanism of enhanced photo-catalytic CO2 conversion to CH4 elucidated through electrochemical and photo-catalytic experiments with traceable isotope containing carbon dioxide (13CO2). For the first time we discovered that diminishing the comparative concentration ratio of anatase from the bulk to surface defects could significantly increase the conversion of CO2 to CH4.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3