The anti-cancer effect and mechanism of animal scale-derived extract on malignant melanoma cells

Author:

Song Lanni,Li Chen,Yu Jia,Yang Yixin,Tian Xuechen,Choo Siew Woh

Abstract

AbstractMelanoma is a type of cancer with abnormal proliferation of melanocytes and is one of the most diagnosed cancer types. In traditional Chinese medicine, pangolin scales have been used to treat various diseases, including human cancers. However, its efficacy has not been scientifically proven. Here we studied the anticancer effect and mechanism of pangolin scale extract (PSE) on melanoma cell lines using scientific approaches. Our cell viability assay shows that PSE exhibits up to approximately 50–80% inhibition on SK-MEL-103 and A375 melanoma cell lines. Mechanically, PSE inhibits melanoma cell proliferation, migration, and causes changes in cell morphology. The apoptosis assay showed a significant chromosomal condensation inside the PSE-treated melanoma cells. The sequencing and analysis of A375 melanoma cell transcriptomes revealed 3077 differentially expressed genes in the 6 h treatment group and 8027 differentially expressed genes in the 72 h treatment group. Transcriptome analysis suggests that PSE may cause cell cycle arrest in melanoma cells and promote apoptosis mainly by up-regulating the p53 signaling pathway and down-regulating the PI3K-Akt signaling pathway. In this study, the anticancer effect of PSE was demonstrated by molecular biological means. PSE shows a significant inhibition effect on melanoma cell proliferation and cell migration in vitro, causes cell cycle arrest and promotes apoptosis through p53 and PI3K-AKT pathways. This study provides better insights into the anti-cancer efficacy and underlying mechanism of PSE and a theoretical basis for mining anticancer compounds or the development of new treatments for melanoma in the future. It is worth noting that this study does not advocate the use of the pangolin scale for disease treatment, but only to confirm its usefulness from a scientific research perspective and to encourage subsequent research around the development of active compounds to replace pangolin scales to achieve the conservation of this endangered species.

Funder

Wenzhou Science and Technology Project

Wenzhou Municipal Key Lab for Biomedical and Biopharmaceutical Informatics of Wenzhou-Kean University

high-level talent recruitment programme for academic and research platform construction of Wenzhou-Kean University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3