Author:
Meurot C.,Martin C.,Sudre L.,Breton J.,Bougault C.,Rattenbach R.,Bismuth K.,Jacques C.,Berenbaum F.
Abstract
AbstractOsteoarthritis (OA) is a common disabling disease worldwide, with no effective and safe disease-modifying drugs (DMOAD) in the market. However, studies suggest that drugs, such as liraglutide, which possess strong potential in decreasing low-grade systemic inflammation may be effective in treating OA. Therefore, the aim of this study was to examine the anti-inflammatory, analgesic, and anti-degradative effects in OA using in vitro and in vivo experiments. The results showed that intra-articular injection of liraglutide alleviated pain-related behavior in in vivo sodium monoiodoacetate OA mouse model, which was probably driven by the GLP-1R-mediated anti-inflammatory activity of liraglutide. Moreover, liraglutide treatment significantly decreased IL-6, PGE2 and nitric oxide secretion, and the expression of inflammatory genes in vitro in chondrocytes and macrophages in a dose-dependent manner. Additionally, liraglutide shifted polarized macrophage phenotype in vitro from the pro-inflammatory M1 phenotype to the M2 anti-inflammatory phenotype. Furthermore, liraglutide exerted anti-catabolic activity by significantly decreasing the activities of metalloproteinases and aggrecanases, a family of catabolic enzymes involved in cartilage breakdown in vitro. Overall, the findings of this study showed that liraglutide ameliorated OA-associated pain, possess anti-inflammatory and analgesic properties, and could constitute a novel therapeutic candidate for OA treatment.
Publisher
Springer Science and Business Media LLC
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献