Automatic detection method for tobacco beetles combining multi-scale global residual feature pyramid network and dual-path deformable attention

Author:

Chen Yuling,Li Xiaoxia,Lv Nianzu,He Zhenxiang,Wu Bin

Abstract

AbstractAiming at the problems of identifying storage pest tobacco pest beetles from images that have few object pixels and considerable image noise, and therefore suffer from lack of information and identifiable features, this paper proposes an automatic monitoring method of tobacco beetle based on Multi-scale Global residual Feature Pyramid Network and Dual-path Deformable Attention (MGrFPN-DDrGAM). Firstly, a Multi-scale Global residual Feature Pyramid Network (MGrFPN) is constructed to obtain rich high-level semantic features and more complete information on low-level features to reduce missed detection; Then, a Dual-path Deformable receptive field Guided Attention Module (DDrGAM) is designed to establish long-range channel dependence, guide the effective fusion of features and improve the localization accuracy of tobacco beetles by fitting the spatial geometric deformation features of and capturing the spatial information of feature maps with different scales to enrich the feature information in the channel and spatial. Finally, to simulate a real scene, a multi-scene tobacco beetle dataset is created. The dataset includes 28,080 images and manually labeled tobacco beetle objects. The experimental results show that under the framework of the Faster R-CNN algorithm, the detection precision and recall rate of this method can reach 91.4% and 98.4% when the intersection ratio (IoU) is 0.5. Compared with Faster R-CNN and FPN, when the intersection ratio (IoU) is 0.7, the detection precision is improved by 32.9% and 6.9%, respectively. The proposed method is superior to the current mainstream methods.

Funder

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Sichuan Province Science and Technology Support Program

the school-level project of Xinjiang Institute of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3