Non-destructive monitoring of forming quality of self-piercing riveting via a lightweight deep learning

Author:

Lin Sen,Zhao Lun,Wang Sen,Islam Md Shafiqul,Wei Wu,Huo Xiaole,Guo Zixin

Abstract

AbstractSelf-piercing riveting (SPR) has been widely used in automobile body jointing. However, the riveting process is prone to various forming quality failures, such as empty riveting, repeated riveting, substrate cracking, and other riveting defects. This paper combines deep learning algorithms to achieve non-contact monitoring of SPR forming quality. And a lightweight convolutional neural network with higher accuracy and less computational effort is designed. The ablation and comparative experiments results show that the lightweight convolutional neural network proposed in this paper achieves improved accuracy and reduced computational complexity. Compared with the original algorithm, the algorithm’s accuracy in this paper is increased by 4.5$$\%$$ % , and the recall is increased by 1.4$$\%$$ % . In addition, the amount of redundant parameters is reduced by 86.5$$\%$$ % , and the amount of computation is reduced by 47.33$$\%$$ % . This method can effectively overcome the limitations of low efficiency, high work intensity, and easy leakage of manual visual inspection methods and provide a more efficient solution for monitoring the quality of SPR forming quality.

Funder

Scientific Research Startup Fund for Shenzhen High-Caliber Personnel of SZPT

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3