Amiodarone inhibits arrhythmias in hypertensive rats by improving myocardial biomechanical properties

Author:

Nie Yifeng,He Yin,Han Dong,Liu Yuansheng,Li Xiang

Abstract

AbstractThe prevalence of arrhythmia in patients with hypertension has gradually attracted widespread attention. However, the relationship between hypertension and arrhythmia still lacks more attention. Herein, we explore the biomechanical mechanism of arrhythmia in hypertensive rats and the effect of amiodarone on biomechanical properties. We applied micro-mechanics and amiodarone to stimulate single ventricular myocytes to compare changes of mechanical parameters and the mechanism was investigated in biomechanics. Then we verified the expression changes of genes and long non-coding RNAs (lncRNAs) related to myocardial mechanics to explore the effect of amiodarone on biomechanical properties. The results found that the stiffness of ventricular myocytes and calcium ion levels in hypertensive rats were significantly increased and amiodarone could alleviate the intracellular calcium response and biomechanical stimulation. In addition, experiments showed spontaneously hypertensive rats were more likely to induce arrhythmia and preoperative amiodarone intervention significantly reduced the occurrence of arrhythmias. Meanwhile, high-throughput sequencing showed the genes and lncRNAs related to myocardial mechanics changed significantly in the spontaneously hypertensive rats that amiodarone was injected. These results strengthen the evidence that hypertension rats are prone to arrhythmia with abnormal myocardial biomechanical properties. Amiodarone effectively inhibit arrhythmia by improving the myocardial biomechanical properties and weakening the sensitivity of mechanical stretch stimulation.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3