Influence of electrode potential, pH and NAD+ concentration on the electrochemical NADH regeneration

Author:

Aamer Emad,Thöming Jorg,Baune Michael,Reimer Nicholas,Dringen Ralf,Romero Manuela,Bösing Ingmar

Abstract

AbstractElectrochemical NAD+ reduction is a promising method to regenerate NADH for enzymatic reactions. Many different electrocatalysts have been tested in the search for high yields of the 1,4-isomer of NADH, the active NADH, but aside from electrode material, other system parameters such as pH, electrode potential and educt concentration also play a role in NADH regeneration. The effect of these last three parameters and the mechanisms behind their influence on NADH regeneration was systematically studied and presented in this paper. With percentages of active NADH ranging from 10 to 70% and faradaic efficiencies between 1 and 30%, it is clear that all three system parameters drastically affect the reaction outcome. As a proof of principle, the NAD+ reduction in the presence of pyruvate and lactate dehydrogenase was performed. It could be shown that the electrochemical NADH regeneration can also be done successfully in parallel to enzymatically usage of the regenerated cofactor.

Funder

European Regional Development Fund

Universität Bremen

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3