Author:
Szymańska Sonia,Sikora Marcin,Hrynkiewicz Katarzyna,Tyburski Jarosław,Tretyn Andrzej,Gołębiewski Marcin
Abstract
AbstractThe increase of human population and associated increasing demand for agricultural products lead to soil over-exploitation. Biofertilizers based on lyophilized plant material containing living plant growth-promoting microorganisms (PGPM) could be an alternative to conventional fertilizers that fits into sustainable agricultural technologies ideas. We aimed to: (1) assess the diversity of endophytic bacteria in sugar and sea beet roots and (2) determine the influence of osmoprotectants (trehalose and ectoine) addition during lyophilization on bacterial density, viability and salt tolerance. Microbiome diversity was assessed based on 16S rRNA amplicons sequencing, bacterial density and salt tolerance was evaluated in cultures, while bacterial viability was calculated by using fluorescence microscopy and flow cytometry. Here we show that plant genotype shapes its endophytic microbiome diversity and determines rhizosphere soil properties. Sea beet endophytic microbiome, consisting of genera characteristic for extreme environments, is more diverse and salt resistant than its crop relative. Supplementing osmoprotectants during root tissue lyophilization exerts a positive effect on bacterial community salt stress tolerance, viability and density. Trehalose improves the above-mentioned parameters more effectively than ectoine, moreover its use is economically advantageous, thus it may be used to formulate improved biofertilizers.
Publisher
Springer Science and Business Media LLC
Reference69 articles.
1. Gveroska, B., Miceska, G., Dimitrieski, M. & Korubin-Aleksoska, A. Use of biopreparates in Tobacco protection: contribution to sustainable agriculture. Türk Tarım ve Doğa Bilim. Derg. 1, 1509–1517 (2014).
2. Baez-Rogelio, A., Morales-García, Y. E., Quintero-Hernández, V. & Muñoz-Rojas, J. Next generation of microbial inoculants for agriculture and bioremediation. Microb. Biotechnol. 10, 19–21 (2017).
3. Pretty, J. Agricultural sustainability: concepts, principles and evidence. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363, 447–465 (2008).
4. Malusá, E., Sas-Paszt, L. & Ciesielska, J. Technologies for Beneficial Microorganisms Inocula Used as Biofertilizers. Sci. World J. 2012, 1–12 (2012).
5. Szymańska, S. et al. Metabolic potential and community structure of endophytic and rhizosphere bacteria associated with the roots of the halophyte Aster tripolium L. Microbiol. Res. 182, 68–79 (2016).
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献