Smart filtering of phase residues in noisy wrapped holograms

Author:

Tayebi Behnam,Sharif Farnaz,Han Jae-Ho

Abstract

AbstractPhase unwrapping is one of the major challenges in multiple branches of science that extract three-dimensional information of objects from wrapped signals. In several applications, it is important to extract the unwrapped information with minimal signal resolution degradation. However, most of the denoising techniques for unwrapping are designed to operate on the entire phase map to remove a limited number of phase residues, and therefore they significantly degrade critical information contained in the image. In this paper, we present a novel, smart, and automatic filtering technique for locally minimizing the number of phase residues in noisy wrapped holograms, based on the phasor average filtering (PAF) of patches around each residue point. Both patch sizes and PAF filters are increased in an iterative algorithm to minimize the number of residues and locally restrict the artifacts caused by filtering to the pixels around the residue pixels. Then, the improved wrapped phase can be unwrapped using a simple phase unwrapping technique. The feasibility of our method is confirmed by filtering, unwrapping, and enhancing the quality of a noisy hologram of neurons; the intensity distribution of the spatial frequencies demonstrates a 40-fold improvement, with respect to previous techniques, in preserving the higher frequencies.

Funder

Institute for Information and Communications Technology Promotion

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3