Folding Free Energy Landscape of Ordered and Intrinsically Disordered Proteins

Author:

Chong Song-Ho,Ham Sihyun

Abstract

Abstract Folding funnel is the essential concept of the free energy landscape for ordered proteins. How does this concept apply to intrinsically disordered proteins (IDPs)? Here, we address this fundamental question through the explicit characterization of the free energy landscapes of the representative α-helical (HP-35) and β-sheet (WW domain) proteins and of an IDP (pKID) that folds upon binding to its partner (KIX). We demonstrate that HP-35 and WW domain indeed exhibit the steep folding funnel: the landscape slope for these proteins is ca. −50 kcal/mol, meaning that the free energy decreases by ~5 kcal/mol upon the formation of 10% native contacts. On the other hand, the landscape of pKID is funneled but considerably shallower (slope of −24 kcal/mol), which explains why pKID is disordered in free environments. Upon binding to KIX, the landscape of pKID now becomes significantly steep (slope of −54 kcal/mol), which enables otherwise disordered pKID to fold. We also show that it is the pKID–KIX intermolecular interactions originating from hydrophobic residues that mainly confer the steep folding funnel. The present work not only provides the quantitative characterization of the protein folding free energy landscape, but also establishes the usefulness of the folding funnel concept to IDPs.

Funder

Samsung Science and Technology Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3