Author:
Liang Jiaming,Li Zhanchao,Pan Litan,Khailah Ebrahim Yahya,Sun Linsong,Lu Weigang
Abstract
AbstractDam numerical simulation is an important method to research the dam structural behavior, but it often takes a lot of time for calculation when facing problems that require many simulations, such as structural parameter back analysis. The surrogate model is widely used as a technology to reduce computational cost. Although various methods have been widely investigated, there are still problems in designing the surrogate model's optimal Design of Experiments (DoE). In addition, most of the current DoE focuses on establishing a single-output problem. Designing a reasonable DoE for high-dimensional outputs is also a problem that needs to be solved. Based on the above issues, this research proposes a sequential surrogate model based on the radial basis function model (RBFM) with multi-outputs adaptive sampling. The benchmark function demonstrates the applicability of the proposed method to single-input & multi-outputs and multi-inputs & multi-outputs problems. Then, this method is applied to establishing a surrogate model for dam numerical simulation with multi-outputs. The result demonstrates that the proposed technique can be sampled adaptively and samples can be targeted based on the function form of the surrogate model, which significantly reduces the required sampling and calculation cost.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Major Scientific and Technological Project of Shandong Gangshiyuan Construction Engineering Group Co. Ltd
Publisher
Springer Science and Business Media LLC