The air conditioning in the nose of mammals depends on their mass and on their maximal running speed

Author:

Rigaut Clément,Giaprakis Alice,Deruyver Laura,Goole Jonathan,Lambert Pierre,Haut Benoît

Abstract

AbstractThe nose of the mammals is responsible for filtering, humidifying, and heating the air before entering the lower respiratory tract. This conditioning avoids, notably, dehydration of the bronchial and alveolar mucosa. However, since this conditioning is not perfect, exercising in cold air can induce lung inflammation, both for human and non-human mammals. This work aims to compare the air conditioning in the noses of various mammals during inspiration. We build our study on computational fluid dynamics simulations of the heat exchanges in the lumen of the upper respiratory tract of these mammals. These simulations show that the efficiency of the air conditioning in the nose during inspiration does not relate only to the mass m of the mammal but also to its maximal running speed v. More precisely, the results allow establishing a scaling law relating the efficiency of air conditioning in the nose of mammals to the ratio $$v/\log _{10}(m)$$ v / log 10 ( m ) . The simulations also correlate the resistance to the flow in the nose to the efficiency of this air conditioning. The obtained scaling law allows predicting the air temperature at the top of the trachea during inspiration for nasal-breathing mammals, and thus notably for humans of various ages.

Funder

Université Libre de Bruxelles

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3