Author:
Leus Inga V.,Weeks Jon W.,Bonifay Vincent,Shen Yue,Yang Liang,Cooper Connor J.,Nash Dinesh,Duerfeldt Adam S.,Smith Jeremy C.,Parks Jerry M.,Rybenkov Valentin V.,Zgurskaya Helen I.
Abstract
AbstractTwo membrane cell envelopes act as selective permeability barriers in Gram-negative bacteria, protecting cells against antibiotics and other small molecules. Significant efforts are being directed toward understanding how small molecules permeate these barriers. In this study, we developed an approach to analyze the permeation of compounds into Gram-negative bacteria and applied it to Pseudomonas aeruginosa, an important human pathogen notorious for resistance to multiple antibiotics. The approach uses mass spectrometric measurements of accumulation of a library of structurally diverse compounds in four isogenic strains of P. aeruginosa with varied permeability barriers. We further developed a machine learning algorithm that generates a deterministic classification model with minimal synonymity between the descriptors. This model predicted good permeators into P. aeruginosa with an accuracy of 89% and precision above 58%. The good permeators are broadly distributed in the property space and can be mapped to six distinct regions representing diverse chemical scaffolds. We posit that this approach can be used for more detailed mapping of the property space and for rational design of compounds with high Gram-negative permeability.
Funder
Office of Extramural Research, National Institutes of Health
Defense Threat Reduction Agency
Publisher
Springer Science and Business Media LLC
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献