Abstract
AbstractThe study of factors influencing animal intake can provide a better understanding of the dynamics of the pasture ecosystem and serve as a basis for managing livestock in a more efficient way. We measured different sward surface heights of tall fescue in the process of short-term intake rate of sheep. There was a significant effect of sward surface height on herbage mass (P < 0.001), leaf lamina mass (P < 0.001), other species mass (P = 0.02), bite mass (P = 0.01) and short-term intake rate (P = 0.03) of sheep. There was a quadratic fit between time per bite and bite mass (P = 0.006). Multivariate analysis showed that the short-term intake rate and bite mass were positively correlated (r = 0.97), bite rate and total jaw movement rate were positively correlated but both were negatively correlated with time per bite. The sward surface height of tall fescue corresponding to the maximum short-term herbage intake rate was 22.3 cm. The underlying processes were driven by the bite mass, which was influenced by the leaf lamina bulk density and its consequences upon time per bite. This sward surface height can be adopted as a pre-grazing target for rotational stocking systems to optimize sheep nutrition on pastures.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Ministry of Science, Technology and Innovation | Conselho Nacional de Desenvolvimento Científico e Tecnológico
Publisher
Springer Science and Business Media LLC
Reference57 articles.
1. Keating, B. A., Carberry, P., Thomas, S., Clark, J. Eco-efficient agriculture and climate change: Conceptual foundations and frameworks. In Eco-Efficiency: From Vision to Reality (ed. Hershey, C. H., Neate, P.) 19–28 (CIAT, Cali, 2013).
2. Herrero, M. et al. Livestock and the environment: What have we learned in the past decade?. Annu. Rev. Environ. Resour. 40, 177–202. https://doi.org/10.1146/annurev-environ-031113-093503 (2015).
3. Rouquette, F. M. Jr. Grazing systems research and impact of stocking strategies on pasture–animal production efficiencies. Crop Sci. 55, 2513–2530. https://doi.org/10.2135/cropsci2015.01.0062 (2015).
4. Carvalho, P. C. F. et al. From the bite to precision grazing: Understanding the plant-animal interface to exploit the multi-functionality of grasslands. R. Bras. Zootec. 38, 109–122 (2009).
5. Laca, E. A. Precision livestock production: Tools and concepts. R. Bras. Zootec. 38, 123–132 (2009).
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献