Author:
Zhou Xuebing,Zang Xiaoya,Long Zhen,Liang Deqing
Abstract
AbstractTo reveal the kinetic performance of gas molecules in hydrate growth, hydrate formation from pure CO2, flue gas, and biogas was measured using in-situ Raman and macroscopic methods at 271.6 K. In the in-situ Raman measurements, Raman peaks of gases in the hydrate phase were characterised and normalised by taking the water bands from 2800 to 3800 cm−1 as a reference, whose line shapes were not found to have a noticeable change in the conversion from Ih ice to sI hydrate. The hydrate growth was suggested to start with the formation of unsaturated hydrate nuclei followed by gas adsorption. In hydrate formed from all tested gases, CO2 concentrations in hydrate nuclei were found to be 23–33% of the saturation state. In the flue gas system, the N2 concentration reached a saturation state once hydrate nuclei formed. In the biogas system, competitive adsorption of CH4 and CO2 molecules was observed, while N2 molecules hardly evolved in hydrate formation. Combined with micro- and macroscopic analysis, small molecules such as N2 and CO2 were suggested to be more active in the formation of hydrate nuclei, and the preferential adsorption of CO2 molecules took place in the subsequent gas adsorption process.
Funder
National Natural Science Foundation of China
Guangdong Natural Science Foundation
Guangdong MEPP Fund
Guangdong Special Support Program-Local innovation and entrepreneurship team project
National Key Research and Development Plan of China
Publisher
Springer Science and Business Media LLC
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献