Forecasting the spread of COVID-19 based on policy, vaccination, and Omicron data

Author:

Han Kyulhee,Lee Bogyeom,Lee Doeun,Heo Gyujin,Oh Jooha,Lee Seoyoung,Apio Catherine,Park Taesung

Abstract

AbstractThe COVID-19 pandemic caused by the novel SARS-COV-2 virus poses a great risk to the world. During the COVID-19 pandemic, observing and forecasting several important indicators of the epidemic (like new confirmed cases, new cases in intensive care unit, and new deaths for each day) helped prepare the appropriate response (e.g., creating additional intensive care unit beds, and implementing strict interventions). Various predictive models and predictor variables have been used to forecast these indicators. However, the impact of prediction models and predictor variables on forecasting performance has not been systematically well analyzed. Here, we compared the forecasting performance using a linear mixed model in terms of prediction models (mathematical, statistical, and AI/machine learning models) and predictor variables (vaccination rate, stringency index, and Omicron variant rate) for seven selected countries with the highest vaccination rates. We decided on our best models based on the Bayesian Information Criterion (BIC) and analyzed the significance of each predictor. Simple models were preferred. The selection of the best prediction models and the use of Omicron variant rate were considered essential in improving prediction accuracies. For the test data period before Omicron variant emergence, the selection of the best models was the most significant factor in improving prediction accuracy. For the test period after Omicron emergence, Omicron variant rate use was considered essential in deciding forecasting accuracy. For prediction models, ARIMA, lightGBM, and TSGLM generally performed well in both test periods. Linear mixed models with country as a random effect has proven that the choice of prediction models and the use of Omicron data was significant in determining forecasting accuracies for the highly vaccinated countries. Relatively simple models, fit with either prediction model or Omicron data, produced best results in enhancing forecasting accuracies with test data.

Funder

Ministry of Science and ICT, South Korea

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3