A deep image classification model based on prior feature knowledge embedding and application in medical diagnosis

Author:

Xu Chen,Wu Jiangxing,Zhang Fan,Freer Jonathan,Zhang Zhongqun,Cheng Yihua

Abstract

AbstractAiming at the problem of image classification with insignificant morphological structural features, strong target correlation, and low signal-to-noise ratio, combined with prior feature knowledge embedding, a deep learning method based on ResNet and Radial Basis Probabilistic Neural Network (RBPNN) is proposed model. Taking ResNet50 as a visual modeling network, it uses feature pyramid and self-attention mechanism to extract appearance and semantic features of images at multiple scales, and associate and enhance local and global features. Taking into account the diversity of category features, channel cosine similarity attention and dynamic C-means clustering algorithms are used to select representative sample features in different category of sample subsets to implicitly express prior category feature knowledge, and use them as the kernel centers of radial basis probability neurons (RBPN) to realize the embedding of diverse prior feature knowledge. In the RBPNN pattern aggregation layer, the outputs of RBPN are selectively summed according to the category of the kernel center, that is, the subcategory features are combined into category features, and finally the image classification is implemented based on Softmax. The functional module of the proposed method is designed specifically for image characteristics, which can highlight the significance of local and structural features of the image, form a non-convex decision-making area, and reduce the requirements for the completeness of the sample set. Applying the proposed method to medical image classification, experiments were conducted based on the brain tumor MRI image classification public dataset and the actual cardiac ultrasound image dataset, and the accuracy rate reached 85.82% and 83.92% respectively. Compared with the three mainstream image classification models, the performance indicators of this method have been significantly improved.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3