Experimental measurement and modeling of asphaltene adsorption onto iron oxide and lime nanoparticles in the presence and absence of water

Author:

Ansari Sajjad,Mohammadi Mohammad-Reza,Bahmaninia Hamid,Hemmati-Sarapardeh Abdolhossein,Schaffie Mahin,Norouzi-Apourvari Saeid,Ranjbar Mohammad

Abstract

AbstractAsphaltene precipitation and its adsorption on different surfaces are challenging topics in the upstream and downstream of the oil industries and the environment. In this research, the phenomenon of asphaltenes adsorption in the presence and absence of water on the surface of magnetite, hematite, calcite, and dolomite nanoparticles (NPs) was investigated. Five asphaltenes of different origins, four NPs as adsorbents and Persian Gulf water were used for three-phase (asphaltene/toluene solution + NPs + water) experiments. Characterization of asphaltenes and NPs was performed using Fourier transform infrared spectroscopic (FTIR), dynamic light scattering (DLS), elemental analysis, and field emission scanning electron microscopy (FESEM). Adsorption experiments were performed in two- (asphaltene/toluene solution + NPs) and three-phase systems. The results showed that the most effective parameters for asphaltene adsorption onto these NPs are the asphaltene composition, namely nitrogen content, and the aromaticity of asphaltenes. The significant effects of these parameters were also confirmed by the relevancy factor function as a sensitivity analysis. In the competition of asphaltene adsorption capacity by NPs, iron oxide NPs had the highest adsorption (Magnetite NPs > Hematite NPs > Calcite NPs > Dolomite NPs). From the results of the experiments in the presence of water phase, it could be pointed out that the asphaltenes adsorption onto the NPs was accompanied by a decrease compared to the experiments in the absence of water. The modeling also showed that physical adsorption has a significant contribution to the asphaltenes adsorption on the surface of iron oxides and lime NPs. The results of this research can assist in a better understanding of the asphaltene adsorption phenomenon and the role of iron oxide and lime NPs in solving this problem.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3