Programmable hydraulic resistor for microfluidic chips using electrogate arrays

Author:

Salva Marie L.,Temiz Yuksel,Rocca Marco,Arango Yulieth C.,Niemeyer Christof M.,Delamarche EmmanuelORCID

Abstract

AbstractFlow rates play an important role in microfluidic devices because they affect the transport of chemicals and determine where and when (bio)chemical reactions occur in these devices. Flow rates can conveniently be determined using external peripherals in active microfluidics. However, setting specific flow rates in passive microfluidics is a significant challenge because they are encoded on a design and fabrication level, leaving little freedom to users for adjusting flow rates for specific applications. Here, we present a programmable hydraulic resistor where an array of “electrogates” routes an incoming liquid through a set of resistors to modulate flow rates in microfluidic chips post-fabrication. This approach combines a battery-powered peripheral device with passive capillary-driven microfluidic chips for advanced flow rate control and measurement. We specifically show a programmable hydraulic resistor composed of 7 parallel resistors and 14 electrogates. A peripheral and smartphone application allow a user to activate selected electrogates and resistors, providing 127 (27-1) flow resistance combinations with values spanning on a 500 fold range. The electrogates feature a capillary pinning site (i.e. trench across the flow path) to stop a solution and an electrode, which can be activated in a few ms using a 3 V bias to resume flow based on electrowetting. The hydraulic resistor and microfluidic chip shown here enable flow rates from ~0.09 nL.s−1 up to ~5.66 nL.s−1 with the resistor occupying a footprint of only 15.8 mm2 on a 1 × 2 cm2 microfluidic chip fabricated in silicon. We illustrate how a programmable hydraulic resistor can be used to set flow rate conditions for laminar co-flow of 2 liquids and the enzymatic conversion of a substrate by stationary enzymes (alkaline phosphatase) downstream of the programmable hydraulic resistor.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3