Transient motion of the largest landslide on earth, modulated by hydrological forces

Author:

Aslan Gökhan,De Michele Marcello,Raucoules Daniel,Bernardie Severine,Cakir Ziyadin

Abstract

AbstractSea-level rise of the Caspian Sea (CS) during the early Khvalynian (approximately 40–25 ka BP) generated hundreds of giant landslides along the sea’s ancient coastlines in western Kazakhstan, which extended hundreds of kilometers. Although similar landslides have been observed along the present-day coastlines of the CS in the area of a prominent high escarpment, it remains unclear whether some of these ancient landslides are still active and whether the movement is slow or catastrophic, as previously suggested. The present study is the first to show evidence proving that the geomorphic responses to sea-level changes of the CS that were triggered in the Pleistocene are currently active. Using interferometric synthetic aperture radar (InSAR) data, we show that one of these giant landslides occurring along the western shore of the Kara-Bogaz-Gol (KBG) lagoon of the CS presents active transient motion, which makes it the world’s largest active landslide reported thus far. Extending more than 25 km along the eastern coast of the inundated KBG depression in a N–S direction with maximum landward expansion of 5 km from the shoreline to the flat Ustyurt Plateau, this landslide conveys ~ 10 × 109 m3 rocks toward the lagoon at a rate of ~ 2.5 cm/year. This event releases a nearly episodic aseismic moment of 6.0 × 1010 Nm annually, which is equivalent to the response of an Mw 5.1 earthquake. We analyze the present-day evolution of this giant coastal landslide at high temporal and spatial resolutions using Sentinel-1 radar images acquired on descending and ascending modes every 12 days between 2014 and 2020. Modelling with elastic dislocations suggests that the KBG landslide was accommodated mostly by a shallow basal décollement with a nearly horizontal listric slip plane. Moreover, our analysis reveals week-long accelerating slip events at changing amplitudes that occur seasonally with slow, lateral spreading rather than sudden catastrophic motion. A strong correlation between the episodic slip events and seasonal water-level changes in the KBG lagoon suggests a causative mechanism for the transient accelerating slip events. Although water-level changes are widely acknowledged to trigger transient motion on a land mass, such movement, which is similar to a silent earthquake, has not been observed thus far at this mega scale; on an extremely low-angle detachment planes at < 5° with modulation by sea-level changes. This study suggests that present-day sea-level changes can reactivate giant landslides that originated 40–25 ka.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3