Structural Dynamics of the N-Extension of Cardiac Troponin I Complexed with Troponin C by Site-Directed Spin Labeling Electron Paramagnetic Resonance

Author:

Zhao Chenchao,Somiya Takayasu,Takai Shinji,Ueki Shoji,Arata Toshiaki

Abstract

AbstractThe secondary structure of the N-extension of cardiac troponin I (cTnI) was determined by measuring the distance distribution between spin labels attached to theiandi + 4 residues: 15/19, 23/27, 27/31, 35/39, and 43/47. All of the EPR spectra of these regions in the monomeric state were broadened and had a amplitude that was reduced by two-thirds of that of the single spin-labeled spectra and was fit by two residual distance distributions, with a major distribution one spreading over the range from 1 to 2.5 nm and the other minor peak at 0.9 nm. Only slight or no obvious changes were observed when the extension was bound to cTnC in the cTnI-cTnC complex at 0.2 M KCl. However, at 0.1 M KCl, residues 43/47, located at the PKC phosphorylation sites Ser42/44 on the boundary of the extension, exclusively exhibited a 0.9 nm peak, as expected from α-helix in the crystal structure, in the complex. Furthermore, 23/27, which is located on the PKA phosphorylation sites Ser23/24, showed that the major distribution was markedly narrowed, centered at 1.4 nm and 0.5 nm wide, accompanying the spin label immobilization of residue 27. Residues 35 and 69 at site 1 and 2 of cTnC exhibited partial immobilization of the attached spin labels upon complex formation. The results show that the extension exhibited a primarily partially folded or unfolded structure equilibrated with a transiently formed α-helix-like short structure over the length. We hypothesize that the structure binds at least near sites 1 and 2 of cTnC and that the specific secondary structure of the extension on cTnC becomes uncovered when decreasing the ionic strength demonstrating that only the phosphorylation regions of cTnI interact stereospecifically with cTnC.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3