Author:
Paritala Phani Kumari,Anbananthan Haveena,Hautaniemi Jacob,Smith Macauley,George Antony,Allenby Mark,Mendieta Jessica Benitez,Wang Jiaqiu,Maclachlan Liam,Liang EeShern,Prior Marita,Yarlagadda Prasad K. D. V.,Winter Craig,Li Zhiyong
Abstract
AbstractComputational fluid dynamics (CFD) simulations are increasingly utilised to evaluate intracranial aneurysm (IA) haemodynamics to aid in the prediction of morphological changes and rupture risk. However, these models vary and differences in published results warrant the investigation of IA-CFD reproducibility. This study aims to explore sources of intra-team variability and determine its impact on the aneurysm morphology and CFD parameters. A team of four operators were given six sets of magnetic resonance angiography data spanning a decade from one patient with a middle cerebral aneurysm. All operators were given the same protocol and software for model reconstruction and numerical analysis. The morphology and haemodynamics of the operator models were then compared. The segmentation, smoothing factor, inlet and outflow branch lengths were found to cause intra-team variability. There was 80% reproducibility in the time-averaged wall shear stress distribution among operators with the major difference attributed to the level of smoothing. Based on these findings, it was concluded that the clinical applicability of CFD simulations may be feasible if a standardised segmentation protocol is developed. Moreover, when analysing the aneurysm shape change over a decade, it was noted that the co-existence of positive and negative values of the wall shear stress divergence (WSSD) contributed to the growth of a daughter sac.
Funder
Australian Research Council
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献