Modelling menstrual cycle length in athletes using state-space models

Author:

de Paula Oliveira Thiago,Bruinvels Georgie,Pedlar Charles R,Moore Brian,Newell John

Abstract

AbstractThe ability to predict an individual’s menstrual cycle length to a high degree of precision could help female athletes to track their period and tailor their training and nutrition correspondingly. Such individualisation is possible and necessary, given the known inter-individual variation in cycle length. To achieve this, a hybrid predictive model was built using data on 16,524 cycles collected from a sample of 2125 women (mean age 34.38 years, range 18.00–47.10, number of menstrual cycles ranging from 4 to 53). A mixed-effect state-space model was fitted to capture the within-subject temporal correlation, incorporating a Bayesian approach for process forecasting to predict the duration (in days) of the next menstrual cycle. The modelling procedure was split into three steps (1) a time trend component using a random walk with an overdispersion parameter, (2) an autocorrelation component using an autoregressive moving-average model, and (3) a linear predictor to account for covariates (e.g. injury, stomach cramps, training intensity). The inclusion of an overdispersion parameter suggested that $$26.36\%$$ 26.36 % $$[23.68\%,29.17\%]$$ [ 23.68 % , 29.17 % ] of cycles in the sample were overdispersed. The random walk standard deviation for a non-overdispersed cycle is $$27.41 \pm 1.05$$ 27.41 ± 1.05 [1.00, 1.09] days while under an overdispersed cycle, the menstrual cycle variance increase in 4.78 [4.57, 5.00] days. To assess the performance and prediction accuracy of the model, each woman’s last observation was used as test data. The root mean square error (RMSE), concordance correlation coefficient and Pearson correlation coefficient (r) between the observed and predicted values were calculated. The model had an RMSE of 1.6412 days, a precision of 0.7361 and overall accuracy of 0.9871. In conclusion, the hybrid model presented here is a helpful approach for predicting menstrual cycle length, which in turn can be used to support female athlete wellness.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3