Author:
Sajjad Muhammad,Nair Surabhi Suresh,Samad Yarjan Abdul,Singh Nirpendra
Abstract
AbstractHerein, we have conducted a comprehensive study to uncover the thermal transport properties and hydrogen evolution reaction catalytic activity of recently synthesized holey graphyne. Our findings disclose that holey graphyne has a direct bandgap of 1.00 eV using the HSE06 exchange–correlation functional. The absence of imaginary phonon frequencies in the phonon dispersion ensures its dynamic stability. The formation energy of holey graphyne turns out to be − 8.46 eV/atom, comparable to graphene (− 9.22 eV/atom) and h-BN (− 8.80 eV/atom). At 300 K, the Seebeck coefficient is as high as 700 μV/K at a carrier concentration of 1 × 1010 cm-2. The predicted room temperature lattice thermal conductivity (κl) of 29.3 W/mK is substantially lower than graphene (3000 W/mK) and fourfold smaller than C3N (128 W/mK). At around 335 nm thickness, the room temperature κl suppresses by 25%. The calculated p-type figure of merit (ZT) reaches a maximum of 1.50 at 300 K, higher than that of holey graphene (ZT = 1.13), γ-graphyne (ZT = 0.48), and pristine graphene (ZT = 0.55 × 10–3). It further scales up to 3.36 at 600 K. Such colossal ZT values make holey graphyne an appealing p-type thermoelectric material. Besides that, holey graphyne is a potential HER catalyst with a low overpotential of 0.20 eV, which further reduces to 0.03 eV at 2% compressive strain.
Funder
Khalifa University of Science and Technology, United Arab Emirates
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献