In vivo assessment of mitral valve leaflet remodelling following myocardial infarction

Author:

Rego Bruno V.ORCID,Khalighi Amir H.,Lai Eric K.,Gorman Robert C.,Gorman Joseph H.,Sacks Michael S.

Abstract

AbstractEach year, more than 40,000 people undergo mitral valve (MV) repair surgery domestically to treat regurgitation caused by myocardial infarction (MI). Although continual MV tissue remodelling following repair is believed to be a major contributor to regurgitation recurrence, the effects of the post-MI state on MV remodelling remain poorly understood. This lack of understanding limits our ability to predict the remodelling of the MV both post-MI and post-surgery to facilitate surgical planning. As a necessary first step, the present study was undertaken to noninvasively quantify the effects of MI on MV remodelling in terms of leaflet geometry and deformation. MI was induced in eight adult Dorset sheep, and real-time three-dimensional echocardiographic (rt-3DE) scans were collected pre-MI as well as at 0, 4, and 8 weeks post-MI. A previously validated image-based morphing pipeline was used to register corresponding open- and closed-state scans and extract local in-plane strains throughout the leaflet surface at systole. We determined that MI induced permanent changes in leaflet dimensions in the diastolic configuration, which increased with time to 4 weeks, then stabilised. MI substantially affected the systolic shape of the MV, and the range of stretch experienced by the MV leaflet at peak systole was substantially reduced when referred to the current time-point. Interestingly, when we referred the leaflet strains to the pre-MI configuration, the systolic strains remained very similar throughout the post-MI period. Overall, we observed that post-MI ventricular remodeling induced permanent changes in the MV leaflet shape. This predominantly affected the MV’s diastolic configuration, leading in turn to a significant decrease in the range of stretch experienced by the leaflet when referenced to the current diastolic configuration. These findings are consistent with our previous work that demonstrated increased plastic (i.e. non-recoverable) leaflet deformations post-MI, that was completely accounted for by the associated changes in collagen fiber structure. Moreover, we demonstrated through noninvasive methods that the state of the MV leaflet can elucidate the progression and extent of MV adaptation following MI and is thus highly relevant to the design of current and novel patient specific minimally invasive surgical repair strategies.

Funder

American Heart Association

U.S. Department of Health &; Human Services | NIH | National Heart, Lung, and Blood Institute

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3