On leveraging self-supervised learning for accurate HCV genotyping

Author:

Fahmy Ahmed M.,Hammad Muhammed S.,Mabrouk Mai S.,Al-atabany Walid I.

Abstract

AbstractHepatitis C virus (HCV) is a major global health concern, affecting millions of individuals worldwide. While existing literature predominantly focuses on disease classification using clinical data, there exists a critical research gap concerning HCV genotyping based on genomic sequences. Accurate HCV genotyping is essential for patient management and treatment decisions. While the neural models excel at capturing complex patterns, they still face challenges, such as data scarcity, that exist a lot in computational genomics. To overcome this challenges, this paper introduces an advanced deep learning approach for HCV genotyping based on the graphical representation of nucleotide sequences that outperforms classical approaches. Notably, it is effective for both partial and complete HCV genomes and addresses challenges associated with imbalanced datasets. In this work, ten HCV genotypes: 1a, 1b, 2a, 2b, 2c, 3a, 3b, 4, 5, and 6 were used in the analysis. This study utilizes Chaos Game Representation for 2D mapping of genomic sequences, employing self-supervised learning using convolutional autoencoder for deep feature extraction, resulting in an outstanding performance for HCV genotyping compared to various machine learning and deep learning models. This baseline provides a benchmark against which the performance of the proposed approach and other models can be evaluated. The experimental results showcase a remarkable classification accuracy of over 99%, outperforming traditional deep learning models. This performance demonstrates the capability of the proposed model to accurately identify HCV genotypes in both partial and complete sequences and in dealing with data scarcity for certain genotypes. The results of the proposed model are compared to NCBI genotyping tool.

Funder

Nile University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3