Site selection and prediction of urban emergency shelter based on VGAE-RF model

Author:

Wang Yong,Han Yaoyao,Luo An,Xu Shenghua,Chen Jian,Liu Wangwang

Abstract

AbstractAs urban development accelerates and natural disasters occur more frequently, the urgency of developing effective emergency shelter planning strategies intensifies. The shelter location selection method under the traditional multi-criteria decision-making framework suffers from issues such as strong subjectivity and insufficient data support. Artificial intelligence offers a robust data-driven approach for site selection; however, many methods neglect the spatial relationships of site selection targets within geographical space. This paper introduces an emergency shelter site selection model that combines a variational graph autoencoder (VGAE) with a random forest (RF), namely VGAE-RF. In the constructed urban spatial topological graph, based on network geographic information, this model captures both the latent features of geographic unit coupling and integrates explicit and latent features to forecast the likelihood of emergency shelters in the construction area. This study takes Beijing, China, as the experimental area and evaluates the reliability of different model methods using a confusion matrix, Receiver Operating Characteristic (ROC) curve, and Imbalance Index of spatial distribution as evaluation indicators. The experimental results indicate that the proposed VGAE-RF model method, which considers spatial semantic associations, displays the best reliability.

Funder

National Key Research and Development Program of China

Basic Research Fund of CASM

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3