Winding-to-ground fault location in power transformer windings using combination of discrete wavelet transform and back-propagation neural network

Author:

Chiradeja Pathomthat,Ngaopitakkul Atthapol

Abstract

AbstractPower transformers are important equipment in power systems and require a responsive and accurate protection system to ensure system reliability. In this paper, a fault location algorithm for power transformers based on the discrete wavelet transform and back-propagation neural network is presented. The system is modelled on part of Thailand’s transmission and distribution system. The ATP/EMTP software is used to simulate fault signals to validate the proposed algorithm, and the performance is evaluated under various conditions. In addition, various activation functions in the hidden and output layers are compared to select suitable functions for the algorithm. Test results show that the proposed algorithm can correctly locate faults on the transformer winding under different conditions with an average error of less than 0.1%. This result demonstrates the feasibility of implementing the proposed algorithm in actual protection systems for power transformers.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3