Vitamin A supplement after neonatal Streptococcus pneumoniae pneumonia inhibits the progression of experimental asthma by altering CD4+T cell subsets

Author:

Tian Yonglu,Tian Qinqin,Wu Yi,Peng Xin,Chen Yunxiu,Li Qinyuan,Zhang Guangli,Tian Xiaoyin,Ren Luo,Luo Zhengxiu

Abstract

AbstractStudies demonstrated that pneumonia can decrease vitamin A productions and vitamin A reduction/deficiency may promote asthma development. Our previous study showed that neonatal Streptococcus pneumoniae (S. pneumoniae) infection promoted asthma development. Whether neonatal S. pneumoniae pneumonia induced asthma was associated with vitamin A levels remains unclear. The aim of this study was to investigate the effects of neonatal S. pneumoniae pneumonia on vitamin A expressions, to explore the effects of vitamin A supplement after neonatal S. pneumoniae pneumonia on adulthood asthma development. Non-lethal S. pneumoniae pneumonia was established by intranasal inoculation of neonatal (1-week-old) female BALB/c mice with D39. S. pneumoniae pneumonia mice were supplemented with or without all-trans retinoic acid 24 hours after infection. Vitamin A concentrations in lung, serum and liver were measured post pneumonia until early adulthood. Four weeks after pneumonia, mice were sensitized and challenged with OVA to induce allergic airway disease (AAD). Twenty-four hours after the final challenge, the lungs and bronchoalveolar lavage fluid (BALF) were collected to assess AAD. We stated that serum vitamin A levels in neonatal S. pneumoniae pneumonia mice were lower than 0.7µmol/L from day 2–7 post infection, while pulmonary vitamin A productions were significantly lower than those in the control mice from day 7–28 post infection. Vitamin A supplement after neonatal S. pneumoniae pneumonia significantly promoted Foxp3+Treg and Th1 productions, decreased Th2 and Th17 cells expressions, alleviated airway hyperresponsiveness (AHR) and inflammatory cells infiltration during AAD. Our data suggest that neonatal S. pneumoniae pneumonia induce serum vitamin A deficiency and long-time lung vitamin A reduction, vitamin A supplement after neonatal S. pneumoniae pneumonia inhibit the progression of asthma by altering CD4+T cell subsets.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3