Collective behavior of soft self-propelled disks with rotational inertia

Author:

De Karmakar SoumenORCID,Chugh AnshikaORCID,Ganesh RajaramanORCID

Abstract

AbstractWe investigate collective properties of a large system of soft self-propelled inertial disks with active Langevin dynamics simulation in two dimensions. Rotational inertia of the disks is found to favor motility induced phase separation (MIPS), due to increased effective persistence of the disks. The MIPS phase diagram in the parameter space of rotational inertia and disk softness is reported over a range of values of translation inertia and self-propulsion strength of the disks. Our analytical prediction of the phase boundary between the homogeneous (no-MIPS) and MIPS state in the limit of small and large rotational inertia is found to agree with the numerical data over a large range of translational inertia. Shape of the high density MIPS phase is found to change from circular to rectangular one as the system moves away from the phase boundary. Structural and dynamical properties of the system, measured by several physical quantities, are found to be invariant in the central region of the high density MIPS phase, whereas they are found to vary gradually near the peripheral region of the high density phase. Importantly, the width of the peripheral region near the phase boundary is much larger compared to the narrow peripheral region far away from the phase boundary. Rich dynamics of the disks inside the high density MIPS phase is addressed. Spatial correlation of velocity of the disks is found to increase with rotational inertia and disk hardness. However, temporal correlation of the disks’ velocity is found to be a function of rotational inertia, while it is independent of disk softness.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamics of active particles with translational and rotational inertia;Journal of Physics: Condensed Matter;2023-04-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3