Author:
Gu Jie,Zhang Xiaobo,Peng ZhangZhe,Peng Zhuoming,Liao Zhouning
Abstract
AbstractClear cell renal carcinoma (ccRCC) is one of the most common cancers worldwide. In this study, a new model of immune-related genes was developed to predict the overall survival and immunotherapy efficacy in patients with ccRCC. Immune-related genes were obtained from the ImmPort database. Clinical data and transcriptomics of ccRCC samples were downloaded from GSE29609 and The Cancer Genome Atlas. An immune-related gene-based prognostic model (IRGPM) was developed using the least absolute shrinkage and selection operator regression algorithm and multivariate Cox regression. The reliability of the developed models was evaluated by Kaplan–Meier survival curves and time-dependent receiver operating characteristic curves. Furthermore, we constructed a nomogram based on the IRGPM and multiple clinicopathological factors, along with a calibration curve to examine the predictive power of the nomogram. Overall, this study investigated the association of IRGPM with immunotherapeutic efficacy, immune checkpoints, and immune cell infiltration. Eleven IRGs based on 528 ccRCC samples significantly associated with survival were used to construct the IRGPM. Remarkably, the IRGPM, which consists of 11 hub genes (SAA1, IL4, PLAUR, PLXNB3, ANGPTL3, AMH, KLRC2, NR3C2, KL, CSF2, and SEMA3G), was found to predict the survival of ccRCC patients accurately. The calibration curve revealed that the nomogram developed with the IRGPM showed high predictive performance for the survival probability of ccRCC patients. Moreover, the IRGPM subgroups showed different levels of immune checkpoints and immune cell infiltration in patients with ccRCC. IRGPM might be a promising biomarker of immunotherapeutic responses in patients with ccRCC. Overall, the established IRGPM was valuable for predicting survival, reflecting the immunotherapy response and immune microenvironment in patients with ccRCC.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献