Author:
Buatik Apichat,Thansirichaisree Phromphat,Kalpiyapun Phisutwat,Khademi Navid,Pasityothin Ittipon,Poovarodom Nakhorn
Abstract
AbstractCracks are the primary indicator informing the structural health of concrete structures. Frequent inspection is essential for maintenance, and automatic crack inspection offers a significant advantage, given its efficiency and accuracy. Previously, image-based crack detection systems have been utilized for individual images, yet these systems are not effective for large inspection areas. This paper thereby proposes an image-based crack detection system using a Deep Convolution Neural Network (DCNN) to identify cracks in mosaic images composed from UAV photos of concrete footings. UAV images are transformed into 3D footing models, from which the composite images are created. The CNN model is trained on 224 $$\times$$
×
224 pixel patches, and training samples are augmented by various image transformation techniques. The proposed method is applied to localize cracks on composite images through the sliding window technique. The proposed VGG16 CNN detection system, with 95% detection accuracy, indicates superior performance to feature-based detection systems.
Funder
Thammasat University
Faculty of Engineering, Thammasat University
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献