Short-term causal effects of common treatments in ambulatory children and young adults with cerebral palsy: three machine learning estimates

Author:

Schwartz Michael H.,Ries Andrew J.,Georgiadis Andrew G.

Abstract

AbstractOrthopedic and neurological impairments (e.g., muscle contractures, spasticity) are often treated in children and young adults with cerebral palsy (CP). Due to challenges arising from combinatorics, research funding priorities, and medical practicalities, and despite extensive study, the evidence base is weak. Our goal was to estimate the short-term effectiveness of 13 common orthopedic and neurological treatments at four different levels of outcome in children and young adults diagnosed with CP. The outcome levels considered were body structures, specific gait kinematic deviations, overall gait kinematic deviations, and functional mobility. We used three well-establish causal inference approaches (direct matching, virtual twins, and Bayesian causal forests) and a large clinical gait analysis database to estimate the average treatment effect on the treated (ATT). We then examined the effectiveness across treatments, methods, and outcome levels. The dataset consisted of 2851 limbs from 933 individuals (some individuals underwent multiple treatment episodes). Current treatments have medium effects on body structures, but modest to minimal effects on gait and functional mobility. The median ATT of 13 common treatments in children and young adults with CP, measured as Cohen’s D, bordered on medium at the body structures level (median [IQR] = 0.42 [0.05, 0.60]) and became smaller as we moved along the causal chain through specific kinematic deviations (0.21 [0.01, 0.33]), overall kinematic deviations (0.09 [0.03, 0.19]), and functional mobility (-0.01 [-0.06, 0.13]). Further work is needed to understand the source of heterogeneous treatment effects, which are large in this patient population. Replication or refutation of these findings by other centers will be valuable to establish the generalizability of these results and for benchmarking of best practices.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3