Transcriptomic response of Pseudomonas nicosulfuronedens LAM1902 to the sulfonylurea herbicide nicosulfuron

Author:

Li Miaomiao,Li Qingqing,Yao Jun,Sunahara Geoffrey,Duran Robert,Zhang Qinghua,Ruan Zhiyong

Abstract

AbstractThe overuse of the herbicide nicosulfuron has become a global environmental concern. As a potential bioremediation technology, the microbial degradation of nicosulfuron shows much promise; however, the mechanism by which microorganisms respond to nicosulfuron exposure requires further study. An isolated soil-borne bacteria Pseudomonas nicosulfuronedens LAM1902 displaying nicosulfuron, chlorimuron-ethyl, and cinosulfuron degradabilities in the presence of glucose, was used to determine the transcriptional responses to nicosulfuron exposure. RNA-Seq results indicated that 1102 differentially expressed genes (DEGs) were up-regulated and 702 down-regulated under nicosulfuron stress. DEGs were significantly enriched in “ABC transporters”, “sulfur metabolism”, and “ribosome” pathways (p ≤ 0.05). Several pathways (glycolysis and pentose phosphate pathways, a two-component regulation system, as well as in bacterial chemotaxis metabolisms) were affected by nicosulfuron exposure. Surprisingly, nicosulfuron exposure showed positive effects on the production of oxalic acid that is synthesized by genes encoding glycolate oxidase through the glyoxylate cycle pathway. The results suggest that P. nicosulfuronedens LAM1902 adopt acid metabolites production strategies in response to nicosulfuron, with concomitant nicosulfuron degradation. Data indicates that glucose metabolism is required during the degradation and adaptation of strain LAM1902 to nicosulfuron stress. The present studies provide a glimpse at the molecular response of microorganisms to sulfonylurea pesticide toxicity and a potential framework for future mechanistic studies.

Funder

National Natural Science Foundation of China

Major National R & D Projects for the Chinese Ministry of Science and Technology

the 1000-Talents plan

Fundamental Research Funds for Central Non-profit Scientific Institution

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3