M6A plays a potential role in carotid atherosclerosis by modulating immune cell modification and regulating aging-related genes

Author:

Zhao Wenpeng,Xu Yingqi,Zhu Jiabao,Zhang Chaoxuan,Zhou Weimin,Wang Shizhi

Abstract

AbstractRNA N6-methyladenosine (m6A) regulators play essential roles in diverse biological processes, including immune responses. Mounting evidence suggests that their dysregulation is intricately linked to numerous diseases. However, the role of m6A-associated genes in carotid atherosclerosis and their relationship with aging and immune cells remain unclear. Analyze the expression profiles of m6A-related genes in carotid atherosclerosis-related datasets. Based on the expression patterns of m6A-related genes, perform consistent clustering analysis of carotid atherosclerosis samples and investigate associated immune cell infiltration patterns and aging characteristics. Develop an m6A prediction model specific to carotid atherosclerosis and analyze the relationships between immune cells infiltration and aging features. The m6A methylation modification level exhibited a substantial decrease in early-stage carotid atherosclerosis samples compared to late-stage carotid atherosclerosis samples. Subsequently, two distinct m6A subtypes were defined through consensus clustering analysis, with the lower m6A modification level group showing associations with heightened immune cell infiltration and increased expression of aging-related genes. A model composed of five m6A-related genes was formulated, and the results indicated that this model possesses effective predictive and therapeutic capabilities for carotid atherosclerosis. Furthermore, the downregulation of YTHDC1 expression resulted in elevated expression of inflammatory factors and a decrease in the expression of the aging-related gene RGN. Single-cell data analysis suggests that the reduced expression of YTHDC1 may decrease the degradation of inflammation-related factors in macrophages, leading to a highly inflammatory state in the carotid artery wall. Furthermore, the sustained release of inflammatory factors may increase the expression of the aging-related gene RGN in vascular smooth muscle cells, further exacerbating the progression of atherosclerosis. A reduced level of m6A methylation modification could enhance inflammation and expedite cellular aging, thereby contributing to the development of carotid atherosclerosis.

Funder

Applied Research and Cultivation Program of Jiangxi Provincial Health Committee

National Natural Science Foundation of China

Natural Science Foundation in Jiangxi Province

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3