Feature selection for global tropospheric ozone prediction based on the BO-XGBoost-RFE algorithm

Author:

Zhang Biao,Zhang Ying,Jiang Xuchu

Abstract

AbstractOzone is one of the most important air pollutants, with significant impacts on human health, regional air quality and ecosystems. In this study, we use geographic information and environmental information of the monitoring site of 5577 regions in the world from 2010 to 2014 as feature input to predict the long-term average ozone concentration of the site. A Bayesian optimization-based XGBoost-RFE feature selection model BO-XGBoost-RFE is proposed, and a variety of machine learning algorithms are used to predict ozone concentration based on the optimal feature subset. Since the selection of the underlying model hyperparameters is involved in the recursive feature selection process, different hyperparameter combinations will lead to differences in the feature subsets selected by the model, so that the feature subsets obtained by the model may not be optimal solutions. We combine the Bayesian optimization algorithm to adjust the parameters of recursive feature elimination based on XGBoost to obtain the optimal parameter combination and the optimal feature subset under the parameter combination. Experiments on long-term ozone concentration prediction on a global scale show that the prediction accuracy of the model after Bayesian optimized XGBoost-RFE feature selection is higher than that based on all features and on feature selection with Pearson correlation. Among the four prediction models, random forest obtained the highest prediction accuracy. The XGBoost prediction model achieved the greatest improvement in accuracy.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3