Stability, optimum ultrasonication, and thermal and electrical conductivity estimation in low concentrations of Al12Mg17 nanofluid by dynamic light scattering and beam displacement method

Author:

Javadipour Soroush,Shokuhfar Ali,Heidary Zeinab,Amiri Roshkhar Mohammad Amin,Homayouni Keyvan,Rezaei Fatemeh,Zolriasatein Ashkan,Shahhosseini Shahrokh,Rashidi Alimorad,Khamoushi S. M. Mahdi

Abstract

AbstractThe thermal conductivity and stability of nanofluids pose challenges for their use as coolants in thermal applications. The present study investigates the heat transfer coefficient (HTC) of an Al12Mg17 nanofluid through the utilization of a novel beam displacement method. The study also examines the nanofluid's stability, particle size distribution (PSD), TEM micrograph, and electrical conductivity. From three distinct categories of surfactants, a particular surfactant (CTAB) was chosen to disperse Al12Mg17 nanoparticles in DI water, and subsequently, a two-step method was employed to generate the nanofluid. Dispersion stability is visually monitored and quantified with a zeta potential test. HTC and PSD are measured using optical setups. To evaluate the results, the HTC obtained from the beam displacement method is compared with that of the KD2 Pro apparatus, and the PSD findings are analyzed through TEM micrographs. The results show that a 0.16 vol.% CTAB is the maximum stability for 0.025 vol.% Al12Mg17 nanofluid properly. The optimum ultrasonication period is 2 h, yielding a peak PSD of 154 nm. Increasing nanoparticle concentration enhances HTC up to 40% compared to the base fluid at 0.05 vol.%. Electrical conductivity increases linearly from 155 to 188 μ$${\rm S}/\mathrm{cm}$$ S / cm with nanoparticle concentration. Optical methods for measuring HTC in nanofluids offer the advantage of early results, prior to bulk motion. Thus, the application of nanofluids in thermal systems necessitates the development of optical techniques to improve accuracy.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3