A neural network-based method for exhaustive cell label assignment using single cell RNA-seq data

Author:

Li Ziyi,Feng Hao

Abstract

AbstractThe fast-advancing single cell RNA sequencing (scRNA-seq) technology enables researchers to study the transcriptome of heterogeneous tissues at a single cell level. The initial important step of analyzing scRNA-seq data is usually to accurately annotate cells. The traditional approach of annotating cell types based on unsupervised clustering and marker genes is time-consuming and laborious. Taking advantage of the numerous existing scRNA-seq databases, many supervised label assignment methods have been developed. One feature that many label assignment methods shares is to label cells with low confidence as “unassigned.” These unassigned cells can be the result of assignment difficulties due to highly similar cell types or caused by the presence of unknown cell types. However, when unknown cell types are not expected, existing methods still label a considerable number of cells as unassigned, which is not desirable. In this work, we develop a neural network-based cell annotation method called NeuCA (Neural network-based Cell Annotation) for scRNA-seq data obtained from well-studied tissues. NeuCA can utilize the hierarchical structure information of the cell types to improve the annotation accuracy, which is especially helpful when data contain closely correlated cell types. We show that NeuCA can achieve more accurate cell annotation results compared with existing methods. Additionally, the applications on eight real datasets show that NeuCA has stable performance for intra- and inter-study annotation, as well as cross-condition annotation. NeuCA is freely available as an R/Bioconductor package at https://bioconductor.org/packages/NeuCA.

Funder

University of Texas MD Anderson Cancer Center

Case Western Reserve University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3