Author:
Iqbal Javed,Noor-ul-Amin Muhammad,Khan Imad,AlQahtani Salman A.,Yasmeen Uzma,Ahmad Bakhtyar
Abstract
AbstractIn this article, we introduce a novel Bayesian Max-EWMA control chart under various loss functions to concurrently monitor the mean and variance of a normally distributed process. The Bayesian Max-EWMA control chart exhibit strong overall performance in detecting shifts in both mean and dispersion across various magnitudes. To evaluate the performance of the proposed control chart, we employ Monte Carlo simulation methods to compute their run length characteristics. We conduct an extensive comparative analysis, contrasting the run length performance of our proposed charts with that of existing ones. Our findings highlight the heightened sensitivity of Bayesian Max-EWMA control chart to shifts of diverse magnitudes. Finally, to illustrate the efficacy of our Bayesian Max-EWMA control chart using various loss functions, we present a practical case study involving the hard-bake process in semiconductor manufacturing. Our results underscore the superior performance of the Bayesian Max-EWMA control chart in detecting out-of-control signals.
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献