Unveiling the dynamic and thermodynamic interactions of hydrocortisone with β-cyclodextrin and its methylated derivatives through insights from molecular dynamics simulations

Author:

Gholami Roya,Azizi Khaled,Ganjali Koli Mokhtar

Abstract

AbstractCyclodextrins (CDs) can enhance the stability and bioavailability of pharmaceutical compounds by encapsulating them within their cavities. This study utilized molecular dynamics simulations to investigate the interaction mechanisms between hydrocortisone (HC) and various methylated CD derivatives. The results reveal that the loading of HC into CD cavities follows different mechanisms depending on the degree and position of methylation. Loading into βCD and 6-MeβCD was more complete, with the hydroxyl groups of HC facing the primary hydroxyl rim (PHR) and the ketone side facing the secondary hydroxyl rim (SHR). In contrast, 2,3-D-MeβCD and 2,6-D-MeβCD showed a different loading mechanism, with the ketone side facing the PHR and the hydroxyl groups facing the SHR. The root mean square fluctuation (RMSF) analysis demonstrated that methylation increases the flexibility of CD heavy atoms, with 3-MeβCD and 2,3-D-MeβCD exhibiting the highest flexibility. However, upon inclusion of HC, 3-MeβCD, 2,3-D-MeβCD, 2-MeβCD, and 6-MeβCD showed a significant reduction in flexibility, suggesting a more rigid structure that effectively retains HC within their cavities. The radial distribution function revealed a significant reduction in the number of water molecules within the innermost layer of the methylated CD cavities, particularly in TMeβCD, indicating a decrease in polarity. The presence of HC led to the release of high-energy water molecules, creating more favorable conditions for HC loading. Conformational analysis showed that methylation caused a partial decrease in the area of the PHR, a significant decrease in the area of the middle rim, and a notable decrease in the area of the SHR. The loading of HC increased the area of the PHR in most derivatives, with the most pronounced increase observed in 2,6-D-MeβCD and 6-MeβCD. The analysis of interaction energies and binding free energies demonstrated that the binding of HC to methylated CD derivatives is thermodynamically more favorable than to βCD, with the strongest association observed for 6-MeβCD, 2-MeβCD, and 2,3-D-MeβCD.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3