Machine learning-based optimization of pre-symptomatic COVID-19 detection through smartwatch

Author:

Cho Hyeong Rae,Kim Jin Hyun,Yoon Hye Rin,Han Yong Seop,Kang Tae Seen,Choi Hyunju,Lee Seunghwan

Abstract

AbstractPatients with weak or no symptoms accelerate the spread of COVID-19 through various mutations and require more aggressive and active means of validating the COVID-19 infection. More than 30% of patients are reported as asymptomatic infection after the delta mutation spread in Korea. It means that there is a need for a means to more actively and accurately validate the infection of the epidemic via pre-symptomatic detection, besides confirming the infection via the symptoms. Mishara et al. (Nat Biomed Eng 4, 1208–1220, 2020) reported that physiological data collected from smartwatches could be an indicator to suspect COVID-19 infection. It shows that it is possible to identify an abnormal state suspected of COVID-19 by applying an anomaly detection method for the smartwatch’s physiological data and identifying the subject’s abnormal state to be observed. This paper proposes to apply the One Class-Support Vector Machine (OC-SVM) for pre-symptomatic COVID-19 detection. We show that OC-SVM can provide better performance than the Mahalanobis distance-based method used by Mishara et al. (Nat Biomed Eng 4, 1208–1220, 2020) in three aspects: earlier (23.5–40% earlier) and more detection (13.2–19.1% relative better) and fewer false positives. As a result, we could conclude that OC-SVM using Resting Heart Rate (RHR) with 350 and 300 moving average size is the most recommended technique for COVID-19 pre-symptomatic detection based on physiological data from the smartwatch.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3