Integrating computational fluid dynamic, artificial intelligence techniques, and pore network modeling to predict relative permeability of gas condensate

Author:

Zeinedini Ehsan,Dabir Bahram,Dadvar Mitra

Abstract

AbstractThe formation of gas condensate near the wellbore affects the gas liquid two-phase flow between the pores. It may occur in the path between two pores depending on the thermodynamic conditions of the single-phase gas flow, two-phase gas liquid annular flow or the closed path of condensate in the throat. To model the behavior of gas condensate in a network of pores, relative permeability and naturally pressure drop should be calculated. This study obtained the flow characteristics (pressure drop) between the pores at different physical and geometric conditions using computational fluid dynamics (CFD). CFD is time-consuming, so its results were transferred to an artificial neural network (ANN) model and the ANN model was trained. The CFD was replaced with the ANN model for calculating the pressure drop. In addition, instead of utilizing empirical correlations to compute the accurate value of condensate formed in throats' corners at every time step, the flash calculation using Esmaeilzadeh–Roshanfekr equation of state was performed, and closed throats were specified. This accurately estimates gas and condensate distribution in the pore network. Furthermore, the value of condensate that transferred to the adjacent throats was computed using Poiseuille's law. The results showed that the proposed ANN-based proxy model could promote the calculation speed in gas condensate simulation, considering the dynamic change of relative permeability curves as a function of gas condensate saturation. Also, it was found that the relative permeability obtained by the proposed model is in good agreement with the experimental data. By entering the fractures pattern in the network model and predicting the relative permeability of gas and condensate by the proposed method, the role of fractures in gas condensate production in such reservoirs could be predicted. Dynamic changes due to the relative permeability of gas and condensate as a function of saturation can be entered into the reservoir simulation to optimize inertia and positive coupling phenomena to maximized condensate production in gas condensate reservoir.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3