Compact resonant systems for perfect and broadband sound absorption in wide waveguides in transmission problems

Author:

Boulvert Jean,Gabard Gwénaël,Romero-García Vicente,Groby Jean-Philippe

Abstract

AbstractThis work deals with wave absorption in reciprocal asymmetric scattering problem by addressing the acoustic problem of compact absorbers for perfect unidirectional absorption, flush mounted to the walls of wide ducts. These absorbers are composed of several side-by-side resonators that are usually of different geometry and thus detuned to yield an asymmetric acoustic response. A simple lumped-element model analysis is performed to link the dependence of the optimal resonators surface impedance, resonance frequency, and losses to the duct cross-sectional area and resonator spacing. This analysis unifies those of several specific configurations into a unique problem. In addition, the impact of the potential evanescent coupling between the resonators, which is usually neglected, is carefully studied. This coupling can have a strong impact especially on the behavior of compact absorbers lining wide ducts. To reduce the evanescent coupling, the resonators should be relatively small and therefore their resonances should be damped, and not arranged by order of increasing or decreasing resonant frequency. Finally, such an absorber is designed and optimized for perfect unidirectional absorption to prove the relevance of the analysis. The absorber is 30 cm long and 5 cm thick and covers a single side of a 14.8 × 15 cm2 rectangular duct. A mean absorption coefficient of 99% is obtained experimentally between 700 and 800 Hz.

Funder

Agence Nationale de la Recherche

Safran

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3