Controlling wind turbine tower vibration under external force by applying control systems combination

Author:

Amer Y. A.,EL-Sayed A. T.,Agwa M. M.

Abstract

AbstractThe global focus has recently shifted away from fuel-based power sources, and one of the most important projects for energy production is wind energy. To maintain low costs, the current research examines the problem of vibrations affecting wind turbine towers’ performance (WTTs). In particular, the tower, resulting from excessive vibrations, can negatively affect a structure’s power output and service life, as it can cause fatigue. Therefore, we conducted numerical tests on various types of controlled systems. Our tests revealed that combining a new technique cubic negative velocity control (CNVC) and linear negative acceleration control (LNAC) was the most effective and cost-efficient option for vibration damping. This solution was derived by using an approximation method for the averaging technique. The external force is an important component of a nonlinear dynamic system and can be characterized by two-degree-of-freedom (2-DOF) differential coupled equations. After implementing the control measures, we conducted a numerical analysis of the vibration values before and after the operation. Stability is studied numerically. The numerical and approximate solutions were confirmed through the frequency response equation and time history with fourth-order Runge–Kutta (RK-4). Finally, we investigated the effect of parameters and compared our results with those of previously published studies.

Funder

Science and Technology Development Fund

Modern Academy for Engineering & Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3