Author:
Saha Sunil,Sarkar Raju,Roy Jagabandhu,Hembram Tusar Kanti,Acharya Saroj,Thapa Gautam,Drukpa Dowchu
Abstract
AbstractLandslides are major natural hazards that have a wide impact on human life, property, and natural environment. This study is intended to provide an improved framework for the assessment of landslide vulnerability mapping (LVM) in Chukha Dzongkhags (district) of Bhutan. Both physical (22 nos.) and social (9 nos.) conditioning factors were considered to model vulnerability using deep learning neural network (DLNN), artificial neural network (ANN) and convolution neural network (CNN) approaches. Selection of the factors was conceded by the collinearity test and information gain ratio. Using Google Earth images, official data, and field inquiry a total of 350 (present and historical) landslides were recorded and training and validation sets were prepared following the 70:30 ratio. Nine LVMs were produced i.e. a landslide susceptibility (LS), one social vulnerability (SV) and a relative vulnerability (RLV) map for each model. The performance of the models was evaluated by area under curve (AUC) of receiver operating characteristics (ROC), relative landslide density index (R-index) and different statistical measures. The combined vulnerability map of social and physical factors using CNN (CNN-RLV) had the highest goodness-of-fit and excellent performance (AUC = 0.921, 0.928) followed by DLNN and ANN models. This approach of combined physical and social factors create an appropriate and more accurate LVM that may—support landslide prediction and management.
Funder
International Science Council
Publisher
Springer Science and Business Media LLC
Reference59 articles.
1. Thongley, T. & Vansarochana, C. Landslide susceptibility assessment using frequency ratio model at Ossey watershed area in Bhutan. Eng. Appl. Sci. Res. 48(1), 56–64 (2021).
2. Kashyap, R., Pandey, A. C. & Parida, B. R. Spatio-temporal variability of monsoon precipitation and their effect on precipitation triggered landslides in relation to relief in Himalayas. Spat. Inf. Res. https://doi.org/10.1007/s41324-021-00392-8 (2021).
3. Nor Diana, M. I., Muhamad, N., Taha, M. R., Osman, A. & Alam, M. Social vulnerability assessment for landslide hazards in Malaysia: A systematic review study. Land 10(3), 315 (2021).
4. Ram, P. & Gupta, V. Landslide hazard, vulnerability, and risk assessment (HVRA), Mussoorie township, Lesser Himalaya, India. Environ. Dev. Sustain. https://doi.org/10.1007/s10668-021-01449-2 (2021).
5. Kumar, P., Mital, A., Ray, P. C. & Chattoraj, S. L. Landslide hazard and risk assessment along nh-108 in parts of Lesser Himalaya, Uttarkashi, using weighted overlay method. In Geohazards (eds Gali, M. L. & Raghuveer-Rao, P.) 163–180 (Springer, 2021).
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献