Predicting non-response to multimodal day clinic treatment in severely impaired depressed patients: a machine learning approach

Author:

Vetter Johannes Simon,Schultebraucks Katharina,Galatzer-Levy Isaac,Boeker Heinz,Brühl Annette,Seifritz Erich,Kleim Birgit

Abstract

AbstractA considerable number of depressed patients do not respond to treatment. Accurate prediction of non-response to routine clinical care may help in treatment planning and improve results. A longitudinal sample of N = 239 depressed patients was assessed at admission to multi-modal day clinic treatment, after six weeks, and at discharge. First, patient’s treatment response was modelled by identifying longitudinal trajectories using the Hamilton Depression Rating Scale (HDRS-17). Then, individual items of the HDRS-17 at admission as well as individual patient characteristics were entered as predictors of response/non-response trajectories into the binary classification model (eXtremeGradient Boosting; XGBoost). The model was evaluated on a hold-out set and explained in human-interpretable form by SHapley Additive explanation (SHAP) values. The prediction model yielded a multi-class AUC = 0.80 in the hold-out set. The predictive power for the binary classification yielded an AUC = 0.83 (sensitivity = .80, specificity = .77). Most relevant predictors for non-response were insomnia symptoms, younger age, anxiety symptoms, depressed mood, being unemployed, suicidal ideation and somatic symptoms of depressive disorder. Non-responders to routine treatment for depression can be identified and screened for potential next-generation treatments. Such predictors may help personalize treatment and improve treatment response.

Funder

Universität Zürich

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference89 articles.

1. Cuijpers, P. et al. Personalized treatment of adult depression: Medication, psychotherapy, or both? A systematic review. Depress. Anxiety 29, 855–864 (2012).

2. Rush, A. J. The varied clinical presentations of major depressive disorder. J. Clin. Psychiatry 68(Suppl 8), 4–10 (2007).

3. Goldberg, D. The heterogeneity of “major depression”. World Psychiatry 10, 226–228 (2011).

4. Kessler, R. C., Chiu, W. T., Demler, O. & Walters, E. E. Prevalence, severity, and comorbidity of 12-month DSM-IV Disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 11 (2005).

5. Cipriani, A. et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. Focus 16, 420–429 (2018).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3