Structural and functional characterization of M. tuberculosis sedoheptulose- 7-phosphate isomerase, a critical enzyme involved in lipopolysaccharide biosynthetic pathway

Author:

Karan Sumita,Pratap Bhanu,Yadav Shiv Pratap,Ashish FNU,Saxena Ajay K.ORCID

Abstract

AbstractM. tuberculosis GmhA enzyme catalyzes the isomerization of D-sedoheptulose 7-phosphate into D-glycero-D-α-manno-heptose-7-phosphate in GDP-D-glycero-α-D-manno-heptose biosynthetic pathway. The D-glycero-α-D-manno-heptose is a major constituent of lipopolysaccharide and contributes to virulence and antibiotic resistance to mycobacteria. In current study, we have performed the structural and biochemical analysis of M. tuberculosis GmhA, the first enzyme involved in D-sedoheptulose 7-phosphate isomerization in GDP-D-α-D-heptose biosynthetic pathway. The MtbGmhA enzyme exits as tetramer and small angle X-ray scattering analysis also yielded tetrameric envelope in solution. The MtbGmhA enzyme binds to D-sedoheptulose 7-phosphate with Km ~ 0.31 ± 0.06 mM−1 and coverts it to D-glycero-D-α-manno-heptose-7-phosphate with catalytic efficiency (kcat/Km) ~ 1.45 mM−1 s−1. The residues involved in D-sedoheptulose 7-phosphate and Zn2+ binding were identified using modeled MtbGmhA + D-sedoheptulose 7-phosphate + Zn2+ structure. To understand the role in catalysis, six site directed mutants of MtbGmhA were generated, which showed significant decrease in catalytic activity. The circular dichroism analysis showed ~ 46% α-helix, ~ 19% β-sheet and ~ 35% random coil structures of MtbGmhA enzyme and melting temperature ~ 53.5 °C. Small angle X-ray scattering analysis showed the tetrameric envelope, which fitted well with modeled MtbGmhA tetramer in closed conformation. The MtbGmhA dynamics involved in D-sedoheptulose 7-phosphate and Zn2+ binding was identified using dynamics simulation and showed enhanced stability in presence of these ligands. Our biochemical data and structural knowledge have provided insight into mechanism of action of MtbGmhA enzyme, which can be targeted for novel antibiotics development against M. tuberculosis.

Funder

Department of Biotechnology , Ministry of Science and Technology

1. UGC-SAP 2. DST-PURSE 3. UGC-Resource Networking

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3